The transcriptional landscape of dorsal root ganglia after sciatic nerve transection.

نویسندگان

  • Shiying Li
  • Chengbin Xue
  • Ying Yuan
  • Ruirui Zhang
  • Yaxian Wang
  • Yongjun Wang
  • Bin Yu
  • Jie Liu
  • Fei Ding
  • Yuming Yang
  • Xiaosong Gu
چکیده

Following peripheral nerve injury, transcriptional responses are orchestrated to regulate the expression of numerous genes in the lesioned nerve, thus activating the intrinsic regeneration program. To better understand the molecular regulation of peripheral nerve regeneration, we aimed at investigating the transcriptional landscape of dorsal root ganglia (DRGs) after sciatic nerve transection in rats. The cDNA microarray analysis was used to identify thousands of genes that were differentially expressed at different time points post nerve injury (PNI). The results from Euclidean distance matrix, principal component analysis, and hierarchical clustering indicated that 2 nodal transitions in temporal gene expressions could segregate 3 distinct transcriptional phases within the period of 14 d PNI. The 3 phases were designated as "a stress response phase", "a pre-regeneration phase", and "a regeneration phase", respectively, by referring to morphological observation of post-nerve-injury changes. The gene ontology (GO) analysis revealed the distinct features of biological process, cellular component, and molecular function at each transcriptional phase. Moreover, Ingenuity Pathway Analysis suggested that differentially expressed genes, mainly transcription factors and genes associated with neurite/axon growth, might be integrated into regulatory networks to mediate the regulation of peripheral nerve regeneration in a highly cooperative manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat

Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...

متن کامل

Differential expression of the p75 nerve growth factor receptor in glia and neurons of the rat dorsal root ganglia after peripheral nerve transection.

Sympathetic nerve terminals on blood vessels within the dorsal root ganglia sprout after sciatic nerve lesions in the rat. The mechanism underlying this phenomenon is not clear, but might be predicted to involve nerve growth factor or its homologs because these factors are known to trigger collateral sprouting of undamaged sympathetic noradrenergic terminals. We have found that sciatic nerve le...

متن کامل

Induction of interleukin-6 in axotomized sensory neurons.

RNA from rat dorsal root ganglia was analyzed in search of potentially beneficial cytokines that are induced in dorsal root ganglia by nerve injury. By reverse transcription, the PCR, and Southern blotting, interleukin-6 mRNA was detected during development but not in normal adult dorsal root ganglia, reappeared within 1 d of sciatic nerve transection, was maximally increased after 2 and 4 d, a...

متن کامل

Responses of macrophages in rat dorsal root ganglia following peripheral nerve injury.

Immunohistochemical studies with monoclonal antibodies to macrophage antigens were performed on sections of rat lumbar dorsal root ganglia. In confirmation of previous observations, cells with macrophage antigenicity were detected in normal ganglia. Many of these presumptive macrophages were perineuronal in contact with the neuron/satellite cell complex, a few were perivascular, and others were...

متن کامل

Early changes of microRNAs expression in the dorsal root ganglia following rat sciatic nerve transection.

MicroRNAs (miRNAs) are a novel class of small non-coding RNAs that regulate gene expression at the post-transcriptional level. Here we report early alterations of miRNAs expression following rat sciatic nerve injury using microarray analysis. We harvested dorsal root ganglia (DRG) tissues and identified 19 miRNAs that showed significant changes at four early time points after sciatic nerve tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Scientific reports

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015